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A method is outlined by which high-order solutions are obtained for steadily pro- 
gressing shallow water waves. It is shown that a suitable expansion parameter for 
these cnoidal wave solutions is the dimensionless wave height divided by the para- 
meter m of the cn functions: this explicitly shows the limitation of the theory to waves 
in relatively shallow water. The corresponding deep water limitation for Stokes waves 
is analysed and a modified expansion parameter suggested. 

Cnoidal wave solutions to fifth order are given so that a steady wave problem with 
known water depth, wave height and wave period or length may be solved to give 
expressions for the wave profile and fluid velocities, as well as integral quantities such 
as wave power and radiation stress. These series solutions seem to exhibit asymptotic 
behaviour such that there is no gain in including terms beyond fifth order. Results from 
the present theory are compared with exact numerical results and with experiment. It 
is concluded that the fifth-order cnoidal theory should be used in preference to fifth- 
order Stokes wave theory for wavelengths greater than eight times the water depth, 
when it gives quite accurate results. 

1. Introduction 
A knowledge of the flow field due to the passage of water waves has become increas- 

ingly important as more structures are built to resist loads caused primarily by wave- 
induced fluid motion in hostile marine environments. Often, the waves are so long in 
relation to the water depth that existing theories are no longer adequate. In  the absence 
of an accurate shallow water theory, however, theories which are best suited to 
deep water continue to be applied, notably the fifth-order Stokes wave solution (De 
1955; Skjelbreia & Hendrickson 1961). 

Several high-order approximations to irrotational water waves of constant form 
have appeared in recent years, often based on Fourier series, but where convergence is 
slow, if a t  all, for shallow water. These solutions are often numerical, and of an inverse 
formulation, andare generally of such highorder, that it  is difficult toobtain expressions 
for physical quantities as functions of position for practical use. The presentation of 
results has been limited to tables of integral quantities for a range of wave lengths and 
heights. However, these methods have achieved real success in obtaining numerically 
exact solutions for the first time (Schwartz 1974; Cokelet 1977). A survey and com- 
parison of the methods is given in Cokelet’s paper. 

The first shallow-water theory of periodic waves was given by Korteweg & de Vries 
(1895), who showed that the first approximation to the surface profile of steadily 
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progressing waves in shallow water was cnoidal. Littman (1957) proved the existence 
of such solutions for sufficiently small waves. Laitone (1960) obtained the second-order 
approximation to these cnoidal waves. A high-order solution was attempted by Monk- 
meyer (1970), who assumed a cnoidal type of solution, obtaining coefficients of this 
solution to fifth order in wave height. Unfortunately, this was rather difficult to apply 
to a practical problem, as he used an inverse method, obtaining equations for Cartesian 
co-ordinates in terms of the velocity potential and stream function. Also, the equations 
were solved numerically so that results could be presented only in the form of tables of 
coefficients for different wavelengths. Finally, in solving the equations, the elliptic en 
functions were expanded as Fourier series, inhibiting their usefulness in shallow water. 

In  view of the lack of an accurate theory for shallow water waves, it  was decided to 
produce such a theory, but one which contained the following features. 

(i) Dependence on water depth and wave height would be included specifically so 
that no equations need be solved numerically in any subsequent application. Rather, 
any calculations would be limited to the evaluation of series. 

(ii) That it would be direct, giving quantities as functions of time and position 
rather than of stream function and potential. Thus the theory was to be basically a 
high-order extension of Laitone’s second-order cnoidal wave solution (Laitone 1960, 
1965), a shallow water theory complementary to the fifth-order Stokes wave theory of 
Skjelbreia & Hendrickson (1961). 

Using a Rayleigh-Boussinesq series previously applied to solitary waves (Fenton 
1972), exact equations are set up in $ 2 ,  into which series expressions are substituted in 
$3, leading to the formation of a recursion relationship for a solution of any order. 
Computer programs were written to perform the extremely long manipulations and to 
obtain the solutions. In  $ 4 it  is shown that all quantities of the cnoidal wave solution 
are more properly given by series in Elm, where E is the dimensionless wave height and 
m is the parameter of the Jacobian elliptic functions introduced. The use of this 
quantity as an expansion parameter explicitly shows the applicability of the method to  
longer waves (m = 1 for solitary waves but becomes smaller for shorter waves, making 
the expansion quantity s/m larger). 

Solutions were obtained to ninth order, however it was subsequently found that 
there was no justification in going beyond the fifth order. All results to this order are 
presented as tables of coefficients in series expansions. Section 4.3 shows how a practi- 
cal problem involving known water depth, wave height and wavelength or period can 
be solved to give E and m, which can then be used in the series of $4.4 for the wave 
profile, and fluid velocities, accelerations and pressures. In  5 4.5 a number of series for 
integral properties of the wave train are given, such as wave impulse, energy, radiation 
stress, wave power, and mean Stokes drift velocity. 

Results from the present theory are compared with previous work in 8 5. The break- 
down of the Stokes wave approach in shallow water is analysed and compared with 
the breakdown of cnoidal wave approximations in deep water. Wave speed is then 
used as the criterion for comparing the present work with Stokes wave theories. 
Finally, fluid velocity profiles given by the present theory are compared with Stokes 
wave profiles and with experimental results. 
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FIGURE 1. Typical steady water wave moving from left to right, showing the stationary co- 
ordinate system (2, y) and typical fluid velocities in this frame (u, v); the moving co-ordinate 
frame ( X ,  Y )  with typical velocities ( - U ,  V )  ; and physical dimensions of the wave. 

2. Exact operator equations 
Consider two-dimensional periodic waves propagating from left to  right without 

change of form over a layer of fluid on a horizontal bed. I n  a co-ordinate system (X, Y )  
with origin on the bed underneath a wave crest and moving with the same velocity as 
the waves, all motion is steady, with velocity components ( U ( X ,  Y ) ,  V ( X ,  Y ) )  res- 
pectively. 

Another co-ordinate system (x, y )  is fixed on the bed, so that the waves move through 
it in the positive 12: direction, and the fluid velocity a t  any point, is (u(x, y, t ) ,  v(x, y ,  t ) ) .  If 
x,(t) is the horizontal co-ordinate of the (X, Y )  origin at any time t ,  and if the wave speed 
is c = dx,/dt, then 

x = x,(t)+X, y = Y ,  u = U + c  and v = V .  

These co-ordinates and velocities are shown on figure 1, on which the important length 
scales are also shown; these are: h = wavelength; H = wave height; h = minimum 
fluid depth, at the wave trough; y(X)  = fluid depth a t  any point; and 7 = mean fluid 
depth. 

Throughout the following analysis we will deal only with steady motions in the 
( X ,  Y )  frame, until we obtain expressions for velocities in both frames. 

If the fluid motion is incompressible, a stream function $ ( X ,  Y )  exists such that the 
velocity components ( U ,  V )  are given by 

U = a$-/aY and V = - a$/aX,  

and, if the motion is irrotational, $ satisfies Laplace's equation throughout the fluid: 

a2$-/ax2 + azp/a y2 = 0. (2.1) 

The boundary conditions to be satisfied are: 
(a )  On the free surface, given by Y = y ( X ) ,  $ is a constant, - Q say. 
(b )  On the horizontal bed Y = 0, $ = 0. Q is the total volume rate of flow per unit 

span in the steady flow. With the sign conventions we have chosen the apparent flow 
under the steady wave profile is from right to  left. 

5-2 
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(c) On the free surface, the pressure is constant, = 0 say, with Bernoulli’s theorem 
giving 

where R is the energy per unit mass of fluid in the steady flow and which is constant. 
(a$/aY)2)Y=l+ 97 = R, 

If $ is assumed to be given by 

$ = -sin YD.f(X) (2.2) 

where sin YD = sin Yd/dX is the differential operator obtained by expanding in a 

d Y3 d3 Y5 d5 
power series : 

sinYD= y----+--- 
dX 3! dX3 5! dX5 ‘ * . ’  

and wheref’(X) is the horizontal fluid velocity on the bed, it is easily shown that 

a$/aX = -sin YD.f’(X), a$/aY = -cos YD.f’(X), 

a2$/8X2 = -sin YD . f” (X) ,  a2$/aY2 = sin YD .f”(X), 

and the field equation (2.1) is satisfied identically by (2.2). Also, substituting Y = 0 
into (2.2) gives $ = 0, satisfying the bottom boundary condition ( b ) .  

The kinematic surface boundary condition (a )  is satisfied by substituting Y = y(X), 
?,b = - Q in (2.2): 

Similarly the dynamic surface boundary condition (c) gives 

(2.3) 

+[(sinyD.f’)2+ (~osqD.f’)~]+gy = R. (2.4) 

Q = sinyD.f(X). 

Equations (2.3) and (2.4) are two nonlinear, coupled ordinary differential equations in 
the unknowns ~ ( x ) ,  the fluid depth, andf’(X), the horizontal velocity on the bed. In an 
earlier work Fenton (1972) inverted (2.3) to give an expression for f which was substi- 
tuted into (2.4) to give an operator equation in terms of y and all its derivatives. How- 
ever the expression involved a doubly infinite series: in the present work both (2.3) and 
(2.4) will be used to solve for y(X) andf’(X) together. 

Now, 7 and Y are non-dimensionalized with respect to  h, the minimum (or trough) 
depth of fluid. Other dimensions such as the mean depth ;Fi or wavelength A could have 
been used; however, these give much longer expressions for all quantities (see $4.10). 
f is also non-dimensionalized with respect to Q such that (2.3) and (2.4) become 

sinq,D,.f, = 1, (2.5) 

(2 .6)  i“iny*D* .f;(x*))2+ (cosy, D* .fAx*))21 +g*r* = T * ,  

where X, = X/h, y *  = y / h ,  D, = d/dX,, f* = f / Q ,  g* is the ‘gravity number’ 
gh3/Q2, and r* is the dimensionless energy, Rh2/Q2. 

One of the infinite series of derivatives may be eliminated by differentiating (2.5): 

D*(sinT*D*.f,) = 0 = siny,D,.f~+y;cosy*D*.f;. 

This is the alternative form of the kinematic boundary condition, V = Udq/dX, on the 
free surface. Substituting into (2.6) we have the following equations involving q*, & 
and odd derivatives only off*, and the two parameters g, and r * :  

sinq*D,.f,-l = 0 (2.7) 

and W+r’*2) (~osT*~*.f;;)2+9*r*--* = 0. (2.8) 
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3. Series expansion solution 
Equations (2 .7 )  and (2 .8)  have the trivial solution of uniform flow with constant 

depth: 7, = 1 = f; = g , ,  r* = Q ,  which is the well-known critical flow of hydraulic 
engineering. All quantities in (2 .7 )  and (2 .8)  will be expanded about this state. The 
choice of expansion parameter is not obvious but, as the equations are nonlinear, we 
should consider all variation with X, to be as ax,, where a is a straining parameter 
(Lighthill 1949). Now, because even derivatives off; occur in (2 .7)  and (2 .8) ,  terms like 

D2*”(f;(ax*)) = ( a 2 ) W  f(2n+l)(aX*) 

occur, and there will be powers of a2 throughout the system of equations. Hence it 
seems simplest to expand in terms of a2 itself, and we write 

and substitute these into (2 .7)  and (2 .8) .  Grouping all the terms in do, a2, a4, ..., and 
requiring that the coefficient equation of each azi be satisfied identically, the following 
equations are obtained. 
aO: (2 .7)  and (2 .8)  satisfied identically. 

cL2: F,+Y, = 0; 

F1+Y1+g,-r, = 0. 

These equations cannot be solved, but we do obtain 

Fl = -Yl, g ,  = rl. 

F, + Yz + 9, - r2-  +Fi + +F; + g,Y, = 0.  

a4: F2+Y,+F,Y,-*F; = 0 ;  

( 3 . 2 ~ )  

(3 .2b)  

( 3 . 2 ~ )  

(3 .2d )  

Second-order terms appear at this stage - by subtracting one from the other they can 
be eliminated, and using (3 .2a ,  b ) :  

g2-r2-+F;+#F~-glFl  = 0. (3 .2e )  

After some manipulation it can be shown that this has the solution 

and I Fl = -$mcnZ(aX,lm), 

g1 = +(I - 2m) = r,, 

r z - g 2  = +m( l -m) ,  

where cn (aX,lm) is a Jacobian elliptic function of argument ax, and parameter m. 
Often this is written cn (ax,, k) where m = k2. Throughout the present work, no odd 
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power of k is produced, hence we use m. For a description of these elliptic functions, see 
Abramowitz & Stegun (1964). The function cn(aX,lm) has a real period of 4K(m) 
where K is the complete elliptic integral of the first kind. Accordingly, en2 (ax ,Im) has 
a period of 2K(m),  where m is obtained as a function of 01 by a solution of the equation 

ax, = K ( m )  when X, = i h / h ,  

giving +aA/h = R(m). 

Substituting the solution ( 3 . 2 f )  into ( 3 . 1 )  and ( 3 . 2 a )  gives 

7, = 1 +$ma2 en2 (a9,)m) + O(a4). 

Using the boundary condition at the crest: y,(O) = 1 + H/h,  we obtain an expression 
for a in terms of H l h :  

and 7, = 1 + ( H / h )  cn2(aX,)m) + O((H/hI2) ,  
the well-known solution of Korteweg & de Vries ( 1 8 9 5 ) ,  giving rise to the name 
' cnoidal ' waves. 

Now considering a6 terms of ( 2 . 7 )  and (2.8) into which ( 3 . 1 )  has been substituted we 
find the following : 

a6: F3+Y3+F2Y1+YzF1-+FIk+A3 = 0,  ( 3 4 7 )  

F3 + Y, + 9, - r3 + Fl F2 + Y2gl + Y1g2 - il?; + B, = 0, (3 .2h)  

where A, is a term involving first-order known quantities which give contributions at 
this (a2), order, from (2.7): 

and B, is a similar term from ( 2 . 8 ) :  

A, = i&$y - QYl F;, 

B - J-Fiv - yl F'; - 1F + +F;2. 3 - 2 4  1 2 1  

Subtracting ( 3 . 2 h )  from ( 3 . 2 g ) ,  

+Fi + Y2(F1 - gl) + F2(Yl - Fl) - 9, Yl + r3 - 9, + A ,  - B, = 0, ( 3 . 3 4  

a linear differential equation in the unknowns F,, Y2, r3-  g,, in which ( 3 . 2 ~ )  can be used 
to eliminate Y2. By assuming Fz = F,, + F21 en2 (aX,(m) + F22 on4 (aX,lm), substi- 
tuting into ( 3 . 3 a ) ,  and requiring that each power ofcn2 satisfy the equation, we obtain 

F2 = $m(m - I )  + S6-m( 1 - Zm) en2 + +6m2 en4, 

Y2 = #m( 2m - 1 ) on2 + +m2 en4, 
and g --ls - 45++m-$m2,  

where en2 is used to represent cn2(aX,(m). Using the boundary condition that 

y,(O) = l + H / h  = 1+a2Y1(O)+a4Y2(O) 

we recover the second-order solution of Laitone ( 1 9 6 0 )  : 

y* = 1+(H/h)cn2+ ( H / h ) 2 ( - $ c n 2 + d c n 4 ) + O ( ( H / h ) 3 ) ,  (3 .3b)  

(3 .3c)  
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This method may be generalized and used a t  any order in the equations (2.7) and (2.8). 
If we have a solution correct to order n - 1 so that we can write 

where all quantities on the right side are known, and this is substituted into (2.7) and 
(2.8), the following are obtained, similar to those for second order: 

(a2)n+1: + Yn+l - QFk + Yn F1+ Fn Y1+ An+l = 0, (3.5) 

where the last two terms do not appear if n = 2. The quantity An+1 is the coefficient of 
(a2)n+1 in (2.7) obtained by substituting (3.4) correct to only (a2)n-l but formally 
manipulating to order (a2)n+1. If Bn+l is the quantity obtained similarly from (2.8), we 
have 

Fn+1 + Yn+1- SF: + Yn g1+ '1 gn  + F1 Fn + gn+1- rn+1+ Bn+1= 0, 

and subtracting this from (3.5) : 

+'k + Yn(F1 - g l )  + Fn(Y1- F1) -Y1 gn +rn+l- gn+l+ A,+1- Bn+1= 0, n = 233, * * . *  

(3.6) 

Fn+Yn-~P~- l+Yn- lFl+Fn- lYl+An = 0, n = 2,3,  .... (3.7) 

To eliminate Y, from this we use (3.5) obtained a t  one lower order: 

By assuming n n  
Fn = C C Fnkl(cn2)krn* 

k=O Z=O 

the coefficients Fnk, may be found, and the whole solution a t  order n obtained - Fn, 
Y,, gn, r,. The nth order solution is added to the expansions (3.4), and the whole pro- 
cedure repeated a t  one higher order and so on. 

The amount of algebraic manipulation is formidable, even a t  low order, and so com- 
puter programs were written to perform all the differentiation, addition, and multi- 
plication of the triple series in a2, en2 and rn for 7 * and f * and the double series in u2 and 
m for g ,  and r*.  Results were obtained to ninth order in a2, this being a reasonable 
limit for operation on the Cyber 72 computer a t  the University of N.S.W. All calcula- 
tions were performed twice. Double-precision arithmetic correct to 28 significant 
figures was used in calculating coefficients of all the series to fifth order. The results 
were checked using an equation developed by Longuet-Higgins (see $4.6). The accur- 
acy was such that single precision (14 figures) was adequate, and this was used in 
calculating results to ninth order, 

4. Ninth-order cnoidal wave solution 
4.1. Choice of e / m  as expansion parameter 

While the expansions in a2 were convenient for the work described in the previous 
section, it is most common in water wave theory for expansions to be presented in 
terms of dimensionless wave height: H / A  for deep water, and H / h  for shallow water, 
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the present case. To convert the series in a2 to series with e = H / h  as the expansion 
quantity, the condition at  the crest was used: 

H 9 

h i= 1 
q * ( O )  - 1 = - = 8 = (a2)iK(O). 

This series was reverted by computer to give a2 as a series in e which was then substi- 
tuted into each of the series in a2 to give ninth-order expansions in e for q*(X*) ,  
f ’ (X , ) ,  g* and r*. Also, the square root of the series for a2 was obtained, using the 
binomial theorem, to give the following result for a in which results to third order only 
are given : 

0.34375 0.03125 
a =  (;---) 3 e  ( I + e ( - 0 - 8 7 5 + -  0*25) m +e2 (0*86719-- m + -) m2 + o(e3)).  

The parameter of the elliptic functions m can vary between 0 and 1 : because m appears 
to negative powers throughout (4.1), if it does become small then some of the terms in 
( 4 . 1 )  will be very large, and we should not expect the series to be useful. This variation 
of m can be studied using the expression (from 0 3 ) ,  

h 
h 

a- = 2K(m), 

or substituting (4 .1 )  to first order, 

This equation, although accurate only to first order, can be used to examine three 
limits of interest, giving some insight into the nature of the cnoidal solution. 

(a)  Very long waves. For finite wave height E ,  as h/h+ co and the solitary wave case 
is approached, K ( m )  must also approach co, requiring that m-+ 1.  

( b )  Short waves. The elliptic integral K ( m )  on the right side can never be zero, hence 
in the case of h/h+ 0 the equation can only be satisfied by m+ 0, in which case 

m 3 h2 K --f in and 

e 4n2h2 

For finite wave height e this shows explicitly how m+O as h/h-tO, to first order a t  least. 
( c )  InJinitesirnal waves. For a given wavelength h/h  using similar reasoning, as 

e + 0, then it can be shown that m also goes to zero in the same way as in ( b ) :  

-+---. 

elm --f 9 ( 2 7 ~ h / h ) ~ ,  

which is, in general, finite. Thus we have the result that, for very small waves, the 
parameter m also becomes small in such a way that e /m remains finite. 

If e -+ 0 and m -+ 0,  then it is not clear which terms in (4.1) are important because e 
appears in the numerator, and m in the denominator to different powers. This is 
immediately clarified if e everywhere is associated with m-l, so that (4.1) can be 
written in terms of (elm) as 

a = (z 3 E  ;) t (I  + (:)(0.25 - 0.875m) + (0.03125 - 0-34375m+ 0*867188m2) 
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From this it seems that a more natural expansion parameter is Elm, even though the 
nominal one is E .  This equation contains positive powers only of elm and of m. The 
parameter m is now free to take on any of its possible values between 0 and 1, provided 
elm remains finite. For very long waves m -+ 1 and the expansion parameter becomes E .  

For infinitesimal waves, E+ 0, but as shown above elm is finite. This feature of the 
cnoidal expansion, that it is valid for infinitesimal and finite waves but that the effect- 
ive expansion quantity elm is finite in both cases, is unusual. It seems that this is 
because it is based on a method by which even at lowest order a finite nonlinear 
solution is obtained: the series do not give more accurate results for infinitesimal waves. 
In Stokes wave expansions, however, the first-order solution is the linear one: the 
expansion quantity becomes small for infinitesimal waves and higher-order terms may 
be more easily neglected. 

Of the three limiting cases (a) ,  ( b )  and (c)  above, only the short wave limit remains to 
be reconsidered in the light of the use of Elm as the expansion parameter. For finite 
wave height E ,  as A/h+ 0, we showed above that m/e+ 0. Therefore, the use of e/m 
makes it clear that for it to be small, and presumably for the series expansion to give 
accurate results, the short wave limit cannot be included. Throughout the rest of this 
paper, e/m ( = H/mh) or Elm ( = H/mq) will be used as the expansion quantity in all 
series, explicitly showing the limitation of the present approach to waves which are 
neither too high nor too short. 

The right side of (4.2) can be written in the form 

where the aij are numerical coefficients. Similarly, all other series produced in the 
present work are of this form. In  the equations containing variation with X,, for 
example y*(X*), each a,, is a series in powers of cn2 (aX.Im). When expressions for 
fluid velocity a t  a point are given each aii is a double series in powers of cn2 and of Y;. 
As will be seen, when integrated quantities such as ?j* are obtained, the aii are a single 
series in powers of elliptic integrals. 

4.2. Use of minimum depth h as the depth scale 
In Stokes wave expansions the mean depth ?j is used to represent water depth, while 
minimum or trough depth has been used for cnoidal waves. Mean depth seems to be a 
more fundamental scale but i t  will now be shown that using ?j in the present work 
would introduce extra series in powers of elliptic integrals requiring the specification 
of many more coefficients in the presentation of a solution. 

From $3, and as described in $4.1, a series for q / h  was obtained: 

where the qijk are numerical coefficients. The dimensionless mean depth ?j* = ?j/h was 
obtained by integrating this expression: 
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or, in dimensionless terms, 

where K is the complete elliptic integral of the first kind, R(m).  A computer program 
was written to integrate series in cn2, using a recursion relation from Gradshteyn & 
Ryzhik (1965, 55 .13) :  

if I(Z) = - [m cn~(Blm)]~dB, 
/OK 

then I(0) = 1 and I(1) = - l + m + ( E / K ) ,  

where E is the complete elliptic integral of the second kind, E(m), and 

In this way we see that ?j* is a double series in elm and m, but with each term con- 
taining one numerical coefficient plus a second coefficient of E / K :  

While this doubles the number of coefficients necessary, the situation is worse if, for 
example, ?j is to be used in the denominator as a depth scale. Such a case arises if we 
want to give an expression for the dimensionless wave height 5 = H/?j, as used in 
Stokes type expansions: 

Using the binomial expansion to evaluate from (4.4) it can be seen that every 
coefficient of (e/m)imi is another series in (E/K)k,  k = 0,  . . . , i ,  thereby greatly increaa- 
ing the number of coefficients necessary in a solution. For this reason, the trough or 
minimum depth h is used in this work as much as possible in the presentation of results. 
However, it is the mean water depth which is known when a real problem is specified. 
In  the next section, expressions are given so that h may be obtained from f and subse- 
quently used as the depth scale. 

4.3. Obtaining a cnoidal wave solution given water depth, wave height, 
and wave length or period 

The shallow water approximations given in this work generally use h as the depth 
scale, so that the series can be evaluated if both e = H / h  and the parameter m are 
known. Neither are known initially, however, as commonly a wave height H ,  mean 
water depth 5, and either wavelength h or period r are specified. 

Using computer manipulation of the series the expansion (4.5) was obtained: 

where the eijk are numerical coefficients. This quantity Z could have been used through- 
out, which would have required the presentation of many more coefficients. Instead, as 
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it is known, a priori, it  is used only in this section to give equations for e and m .  This 
equation was then reverted to give E as a series in h and m: 

where the eijk are coefficients. This was substituted into the full ninth-order version of 
(4.2) to give a as a function of E ,  m, and E(m)/K(m) ,  and into (4 .4 )  to give if* as a 
function of the same quantities. From $4.1 the equation for wavelength was used: 

ah/h = 2 K ( m ) ,  

therefore 

and the expansions for a and ?j* substituted, the subsequent expansion inverted to 
eive: 

where the hijk are coefficients, as given to fifth order in the appendix, table A 1 .  
The significance of this equation is that it enables us to solve for m, provided the 

three length quantities are known: wavelength A, mean depth ?j and wave height H ,  
giving x* = A/? and Z = HI? .  Clearly (4 .6 )  is an implicit equation form, in which it is 
too deeply embedded for direct solution. It could be solved by trial and error, or by 
Newton's method. The author used trial and error in obtaining the results of 9 6. 

In many practical problems it is not the wavelength that is known initially, but 
rather the wave period r. In  this case an equation similar to (4 .6 )  can be obtained from 
the relation 7 = h/c ,  where c is the phase speed of the waves. A dimensionless period 
r* can be introduced as r* = r(g/?j)*, giving 

The dimensionless wave speed c/(g?j) t  was obtained, using the methods described in 
the next section, as an expansion in 2, m, and E / K ,  and substituted into the above 
equation to give 

(4.7) 

in which the r i j k  are numerical coefficients given in table A 2 in the appendix to fifth 
order. If water depth 7, wave height H and wave period T are known, then this implicit 
equation for m may be solved. A similar procedure must be followed in high-order 
Stokes wave problems, when an implicit equation has to be solved for the quantity 
? / A ,  when h is not known a priori. 

If m. has been calculated for a particular problem, h remains to be found. This can 
quickly be done using the equations obtained during the development of (4 .6) ,  which 
gave the equation 
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where the 
given: 

are numerical coefficients given in table A 3. From the value of h/?j, 6 is 

and the two quantities ( s / m )  and m so found may be used in a11 subsequent expressions. 

4.4. Presentation of expanaim obtained 
All series for the physical quantities given below were obtained to ninth order by 
computer manipulation, however the number of coefficients necessary to specify these 
expansions completely is so large that it is not feasible here. Instead, all coefficients 
are given to fifth order in (e/m) as set out in the appendix. Subsequent comparison 
with experimental results (see $ 5 )  showed that including higher-order terms gave no 
better agreement. The coefficients are given as real numbers, rounded to five decimal 
places. This is sufficiently accurate for direct evaluation of the series; however, further 
manipulation of the series accurate to this degree could produce unacceptable round- 
off errors. 

Throughout the following description of these results, numerical coefficients in a 
particular expansion for a physical quantity will be represented by the symbol for that 
quantity with the number of subscripts necessary, for example a,, in the expansion 
for a. 

Coeficient of X ,  : a. 

a = (! 2))’ 
(:)i 4 m  ( 0  5 - 0  

rnia$,. (See appendix table B 1 for the at,) 

For the solitary wave case, m = 1, the results of Fenton (1972) are obtained. Through- 
out the present work the m = 1 case reduced correctly to the solitary waveresults 
given by Fenton. 

Wave profile : r] .  

VolumeJlux: Q .  The flux, per unit span normal to the plane of flow, under the wave 
and relative to the wave was obtained from the results for 9,: 

f -1  
(TableB 3) 

Energy per unit mass: R. This is the Bernoulli constant in the steady flow as given in 
(2.4). An expansion for r ,  = Rh2/Q2 was obtained as described in $3.  This was multi- 
plied by Q: to give the dimensionless R ,  : 

(TableB 4) 

Fluid velocity relative to wave: U ( X ,  Y ) ,  V ( X ,  Y ) .  From the differential operator of 
$2 we have 

u = a+-/% = - cos Y D  . f (x) ,  
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or, in dimensionless terms, 

and multiplying by Q , : 
Uh/Q = - COSY, D, .fi(X*), 

U/(gh)i  = - Q* COSY* D* .fk(X,). 

14 1 

Substituting the results of $ 3  for fi we obtain a quadruple series in (elm), ( Y / h ) ,  m, 
and cn2(aX,Im), for U ( X ,  Y)/(gh)8, the horizontal fluid velocity relative to the wave. 
With the conventions that we have chosen, waves progressing to the right over other- 
wise quiescent fluid, in the moving frame the steady fluid velocity will be from right to 
left, under the ‘stationary’ wave profile, and will be negative. In  practical applica- 
tions it is not this velocity which is important, but rather the velocity relative to a 
stationary frame, u(x, y, t ) .  After the wave speed is calculated, we will use the results 
of the present section to give expressions for unsteady velocities, accelerations and 
pressures throughout the fluid. 

At fifth order this series has 200 terms, given in table B 5, and a t  ninth 1449 terms ! 
Evaluation by hand calculation is not practicable, however on a computer it is trivial. 
To obtain the vertical component of fluid velocity we can use the equation that the 
fluid motion is incompressible, 

au/ax-tav/aY = 0. 

V 
That is, 

andwith V(X,,O) = 0: 

The elliptic functions sn and dn are simply obtained from cn: 

sna(81m) = 1-cn2(B(m) 

and dn2(81m) = 1 -msn2(81m), 

which appeared here after differentiation of en: 

The equation for V/(gh)4 is not a formally correct expansion in (elm), as it contains the 
summations as shown, all of which are multiplied by a, which is itself an expansion in 
c/m. To give the correct expansion obtained by multiplication would yield another 
large number of coefficients which would have to be presented separately. It does not 
seem reasonable to do this. Below it will be shown how fluid pressures and accelerations 
can be obtained from the same set of q5ijkl. 

Wave speed: c. This is important in relating velocities in the two co-ordinate frames. 
Wave speed is defined to be the time mean horizontal fluid velocity at a fixed point in 
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the stationary frame, equal to the spatial mean a t  a level wholly within the fluid in 
the moving frame. That is, 

in which the negative sign of U in the present convention is ignored. Level Y = 0 was 
used to evaluate this integral, using (4.3): 

(Table B 6) 

The elliptic integral ratio E(m)/K(m) entered here because of the integration of powers 
of cn2. 

Fluid velocity in stationary frame: u(x, y, t),  v(x ,  y, t). In  most practical applications 
it is the velocity relative to a fixed point as waves pass which is more important than 
that relative to moving axes. If (x, y) are the co-ordinates of a point in the stationary 
frame a t  which the velocity components are (u, v) then 

x = X+x,(t), X* = x / h  = X*+Zz(t), y = Y ,  y* = Y*, 

where x,(t) is the horizontal distance of the wave crest from the origin such that 

u= U + c  and v =  V .  

Substituting the results from U and V ,  we note that the vertical velocity is the same in 

c = dXJdt, 

both frames: 

where the argument of all elliptic functions is now a(x* -x$(t)) instead of ax,. The 
horizontal velocity u is 

Fluid acceleration: aulax, aulay, aulat, DulDt, avlax, avlay, avlat, Dv/Dt. In  many 
applications the temporal and spatial derivatives of velocity are required, such as in the 
use of empirical drag force laws. These are simply obtained from the above equations 
and from continuity and irrotationality conditions : 

in which all elliptic functions have argument a(x* - xz(t)), 

_ -  au (!))"& and S a t -  - -c* 
9 ax 

at =-C* 

The acceleration of a fluid particle can be obtained simply from these expressions: 

DU a% itu au DV av av av 
Dt at ax ay ax ay 
-=  -+u-+v- and E=at+u-+v- .  



A high-order cnoidal wave theory 143 

Pressure in the ,fluid: p ( x ,  y ,  t ) .  The fluid pressure p would require another set of 
coefficients as numerous as the $ijkl if it  were to be provided formally. However, these 
$ijk[ may be used to obtain an expression for the pressure. At any point in the fluid, 
Bernoulli’s theorem holds in the frame in which motion is steady: 

p ( X ,  Y ) / p + + ( U 2 +  V2)+gY = R. 

P(X, Y, t)/pgh = R/gh - y* - 4r U2/gh + V2/ghl, 

Dividing by gh, and noting that X = z -xJ t ) ,  Y = y ,  

where R/gh, U/(gh) t  and V/(gh) t  have all been given as fifth-order expansions above. 
The argument of all elliptic functions is ax, = a(x* -x:( t ) ) .  

4.5. Integral properties of cnoidal waves 
In most areas of engineering application, important quantities are those which, as 
functions of position and time, cause dynamic loads on structures. These include the 
surface elevation and the fluid pressures, velocities and accelerations, for which 
expansions have already been given. As well as these there are a number of integral 
properties of the periodic waves which may be of interest. In  Q 4.4 expressions have been 
given for some of these: the volume flux Q/(gh3)t ,  energy per unit mass Rlgh, and 
c/(gh)* the wave speed. The work of Longuet-Higgins (1975) enables us to calculate 
several other integral properties rather moreeasily than would otherwise be possible, 
and frequent reference will be made to that work. Equation numbers with the prefix 
L-H refer to the equation numbers in Longuet-Higgins (1975). Instead of using 
p = 1, we will include it explicitly. All overbars in the following denote a mean with 
respect to X. 

Computer programs were written to perform all necessary manipulations in this 
section. The following expansions in (e/m) were obtained. 
Wave impulse : I .  The mean wave impulse per unit horizontal area is 

In common with most other integral quantities given below, the first contribution to 
wave impulse is at second order in (Elm): the first-order solution gives no contribution. 

Kinetic energy : T .  The mean kinetic energy per unit horizontal area is 

and 

2’ = f q  gp(u2 + v2)  dy = @ I ,  (L-H: B ,  after LBvi-Civita) 
J U  

5 ( i - 1  3 k 

T* = T/pgh2 = +c*I* = x (2) I: rnf x 6) c j k .  (Table c 2) 
t = 2  j = o  k = O  

Potential energy: V .  The conventional symbol V is used, which has alrea.dy repre- 
sented the vertical velocity; the two quantities are so different that the ambiguity 
should not matter. Mean potential energy per unit horizontal area is 

v = 1: P d Y  - V )  dY = 4PS(r2 -  V 2 ) ,  
7 

therefore v* = V/pgh2 = +(r”,-Tj”*. 
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To obtain the first term 7% the series for 7,, was squared and then integrated in the 
same way that ?f* was produced: 

(Table C 3) 

Mean square of bed velocity: Ti:. This quantity may be used in the estimation of real 
fluid effects. After Longuet-Higgins (1975) we have 

(L-H: 3.2, 3.6) 
- 1 A  ui = jo u2(z, 0, t )  d z  = 2(R-g?f)  -c2, 

- 
giving ui/gh = 2 ( R / g h - q * ) - ~ ; ,  

which was evaluated to yield 

(Table C 4) 

Radiation stress : Szx. The excess flux of momentum per unit span due to the waves is 
the radiation stress: 

Sx, = [:(p+pu2)dy-&pg?j2 = 4T-3V+;i?i$. (L-H: C) 

which gave (Table C 5 )  

Mean wave power : F .  The mean energy flux or wave power per unit span is 

F = s,” [ p  + M u 2  + v2) +pg(y  - q)] u d y  = (3T - 2 V )  c + @(I + pc?f ) ,  
-~ 

which becomes, in dimensionless terms, 

and upon substitution of the various series gave 

(L-H: 3.10) 

(Table C 6) 

This series contained terms up to (E /K)4 ,  the highest power in all the physical quan- 
tities except for inverted series such as h/ij. 

Mean Stokes drift velocity: C,. Stokes’ second definition of wave speed, the mean 
velocity throughout the fluid in the translating co-ordinate system, is 

Therefore, 
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and subtracting th.e wave speed c* we obtain the mean speed at  which the fluid par- 
ticles move, relative to a fixed frame, which is the mean Stokes drift velocity, C,/(gh)*: 

C,* = CS/(ghP = Q*/?i*-c*, 

which was evaluated to give 
5 i i - 1  1 

i= 2 j = O  k-0 
(Table C 7) 

MomentumJux:  S .  The momentum flux per unit span in the steady flow, S, is one of 
the three parameters Q ,  R and S introduced by Benjamin & Lighthill (1954) in their 
study of cnoidal waves. Expressions for dimensionless Q and R were given above; here 
we use another result of Longuet-Higgins (1975) to obtain an expression for S: 

f n  
(L-H: 5.2) 

which in dimensionless terms become4 

S* = 8;- 2c* I* + 7j*(c2* + &jTj*). 
This was evaluated and it was found that all the terms in EIK cancelled, leaving the 
relatively simple expression 

(Table C 8) 

The disappearance of EIK from this series might have been expected because of the 
close relation between Q, R and S and the fact that neither Q nor R contained EIK.  In  
this way it provides something of a check on all the series used in generating it. 

4.6. Check on results 

Several of the series presented can be checked using the following equation, developed 
by Longuet-Higgins using variational techniques: 

d ( T  - V )  = 2T ~ C / C  + (T - 2V + &zr) dAlA - @dT, (L-H: 4.17) 

where the differentials can be due to changes in wave height, length and mean depth. 
All quantities in this equation have been given previously as expansions in (c /m),  m, 
and E I K ,  in which m is deeply embedded. Thus, it  seems reasonable to keep m con- 
stant and to vary e only. Wavelength h is given by the equation from § 3: 

ahlh = 2 K ( m ) ,  

1 aa 1 ah - -+- - = 0, 
a a€ A a€ 

therefore, keeping m constant, 

and substituting this and all our dimensionless quantities, 
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Double precision 
accuracy 

0 

0.3 x 
0.2 x 10-26 
0.8 x 

0.4 x 10-27 

- 

TABLE 1 

Single precision 
accuracy 

0.6 x 1O-ls 
0-2 x lo-'* 
0.2 x 10-11 
0.7 x lo-" 
0.5 x 
0.4 x 10-B 
0.2 x 10-8 

0.4 x 10-14 

0-1 x 10-7 

The series expansions generated by the computer programs were substituted into 
this equatio 1 and the maximum error a t  each order obtained, such that of all coeffi- 
cients of mi and (E/K)k a t  each order in (elm) the maximum error is shown in table 1. 

Clearly, the coefficients used in the series are accurate and there has been no dis- 
astrous loss of significance. It does seem, however, that the ninth order is approaching 
the limit of single precision accuracy. 

5. Comparison with previous work 
5.1. Stokes wave expansions 

All results in this work have been presented as double series in powers of (efm) and of m. 
For the series to be truncated a t  finite order and yet give accurate results, (e/m) must 
be not large. As shown in 5 4.1, this is given bye = H / h  being small, but the parameter 
m being finite. If m does become small, however, it  was shown that, as m+ 0, 

e/m -+ $n2h2/A2, 

showing how e/m can become large for short waves. 
Stokes wave expansions which explicitly contain the water depth (e.g. Skjelbreia & 

Hendrickson 1961) have similar features to the series presented here, but are, in a sense, 
complementary. The nominal Stokes expansion parameter is ak, where a is approxi- 
mately half the wave height and k is the wavenumber 2n /A ,  so that the expansion 
parameter is effectively n H / h .  However, the denominator of each term contains 
powers of sinh l c f ,  so that the ratio of successive terms in the expansion can be shown 
to be like 

nH I -~ 
A sinh3kq' 

where Tj is the mean water depth. For waves in deep water no problems arise; however, 
for shallow water k f  -+ 0, and the effective expansion parameter is 

showing that for large values of A / v ,  the long wave case, this quantity can become 
large: precisely the reverse for the cnoidal wave expansions. 
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These deep water, or Stokes wave, expansions have often been applied in the past, 
in the absence of an accurate shallow water theory, to long waves for which they are 
not valid. This misapplication could have been avoided if Stokes expansions had been 
presented as a double series in (akjlsinh3 kij and in sinh2 k?, for example, 

By using (aklsinh3 k?) one would be warned if the expansion were being applied to 
long waves in the same way that using c/m in the cnoidal wave expansion would show 
if it were being applied to short waves. 

5.2. Validity of expansions for speed wave power, etc. 

The most accurate and comprehensive results for progressive gravity waves are those 
of Cokelet (1977) for waves up to and including the highest and covering most of the 
range between deep and shallow water. His results were obtained for ten values of 
dimensionless depth and for each depth some thirty wave amplitudes. These were 
obtained from a very high-order Stokes series (Schwartz 1974) for which accurate sums 
were found using Pad6 approximants. If accurate values of integral parameters such 
as wave speed, or potential energy are required, these could be interpolated from 
Cokelet’s tables. Because of the very high order of the series and the numerical solution 
necessary, explicit expressions were not given for any quantities ; however, the num- 
erical results given provide an accurate basis for comparing the results of Stokes and 
cnoidal expansions. Cokelet’s results (1977) are more accurate than this work could 
hope to match, so there seems little point in presenting a large number of tables and 
graphs of all the results: the results of the present work are the tables of coefficients of 
the series which may be applied to any shallow water situation. 

It does not seem necessary to make detailed comparisons of all the wave quantities 
for which results have been given in appendix C .  As can be seen in Cokelet’s paper the 
gross behaviour of each as affected by wave height and length is similar. Instead, only 
one quantity will be compared here: the wave speed, which has traditionally been used 
as the first basis for comparison between wave theories. All relevant quantities were 
taken from Cokelet’s tables and for a certain constant value of ‘equivalent depth’ 
d l A ,  where d = Q/c, pairs of values of dimensionless wave height H/+j and dimension- 
less speed c2/gij  recorded. Then, knowing H I T  and A / i j ,  rn was found from table A 1 by 
trial and error, h found from table A 3, to give 6 ,  and table B 6 used to obtain c* .  

Results are plotted on figure 2. The numerically exact results of Cokelet are shown 
by the solid lines, except that the infinite wavelength (solitary wave) results are taken 
from Longuet-Higgins & Fenton (1974). Alongside each curve is shown a number which 
is the approximate value of A/? on that curve, which really is drawn for constant 
A c l Q ,  a rather artificial depth scale but one which it was simpler for Cokelet to use. 

Results from the present cnoidal theory are shown by the fifth and ninth order, with 
results from fifth-order Stokes wave theory. Clearly cnoidal wave theory gives excellent 
agreement for almost all wave heights up to about a maximum of 0.65, for wavelength1 
depth ratios of 9 or more. It is interesting that there is a sudden change between 
A / i j  = 7 and 9. For longer waves, cnoidal theory is excellent and Stokes theory not 
good except for low waves, while for shorter waves the situation is reversed. From this 
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0.2 0.4 0.6 0.8 

H h  

FIGURE 2. Dimensionless wave speed squared, e 2 / ( g t ) .  Comparison between the present theory 
(5th order ---, 9th order ---), Stokes wave theory (5th order a s . )  and known results (-). 
Solitary wave ( A  = co) results taken from Longuet-Higgins & Fenton (1974), all others from 
Cokelet (1977). The wave1ength:depth ratios given are approximate. 

it  can be concluded that the boundary of applicability between deep and shallow water 
theories is a t  h/r  w 8. 

Another result that is of interest is the apparent little gain to be had by using ninth- 
order results rather than fifth order. For long waves, the ninth gives slightly greater 
accuracy; however, for shorter waves, the effect of m decreasing in elm is felt and the 
ninth-order solution diverges disastrously. This behaviour is similar to that of many 
asymptotic series for which the inclusion of higher-order terms decreases accuracy, 
which suggests here that the expansion for wave speed is an asymptotic rather than ti 
convergent series. It seems highly probable that all of the series generated in the present 
work are of this asymptotic form. For practical purposes it is convenient that the 
fifth-order solution seems to be so accurate for all long waves and that the series can be 
truncated a t  this order. 

Finally, it  may be noticed that the phenomenon of the speed having a maximum is 
not described using the present expansion in wave height. If one were to recast the 
expansions in other parameters, then for sufficiently high-order expansions and with 



A high-order cnoidal wave theory 149 

0 0.25 0 0-25 0 0.25:O 0.2510 0.25 0 0.25 

u , / ( g d  

1.0 

F 
A 

0 0.25)O 0.25’0 0.2510 

u, / (gmj  

P’~arm 3. Vertical distribution of horizontal fluid velocity under wave crests. Experimental 
results of Iwagaki & Sakai (1970) are within the horizontally hatched regions. Fifth-order cnoidal 
wave theory (-), fifth-order Stokes wave theory (---). (a)  I = 0.282, T* = 16.8 (x* x 17.3); 
( b )  Z = 0.324, T* = 13.6 (x x 13.9); (c) I = 0.297, 7* = 12.9 (A* % 13.0); ( d )  5 = 0.306, 
7* = 12-0 (2 ,  x 12.0); ( e )  E = 0-308, 7* = 11.9 (2, x 11.9); (f) 5 = 0.239, T* = 10.0 (A* FZ 9.6); 
(9)  Z = 0.318, T* = 9.6 (x, x 9.3); (h)  5 = 0.307, 7* = 8.6 ( A  x 8.1); (i) 5 = 0.306, 7+ = 8.3 
(A, x 7.8); ( j )  5 = 0.326, 7* = 7.4 ( A  x 6.8); (k) I = 0.345, T* = 6.6 (A* x 5.9); ( 1 )  5 = 0.298, 
T* = 5.3 (A Z 4.4). 

convergence improvement techniques, exact numerical results could presumably be 
obtained, as did Longuet-Higgins & Fenton (1974) for the solitary wave and Cokelet 
(1977) for Stokes waves. However, one of the main purposes of the present work is to 
give a usable expansion for shallow water waves which gives quite accurate results 
at relatively low order, so that the duplication of previously obtained accurate 
numerical results seems unnecessary. 

5.3. Validity of expressions for  Juid velocity 

As stated in the introduction, the stimulus for this work was the need for an accurate 
shallow water wave theory to give the fluid flow field under waves. Two experimental 
investigations which measured the fluid velocity as waves passed along a laboratory 
tank are those reported by Le MBhautB, Divoky & Lin (1968) and Iwagaki & Sakai 
(1970). The most important velocity measured in each case was the horizontal velocity 
under the crest and its variation with depth. From each of these papers, the present 
author drew approximate envelope curves to all of the experimental points, which were 
scaled and plotted on figures 3 and 4, so that almost all of their results fell within the 
horizontally hatched regions. Each profile was plotted with the dimensionless horizon- 
tal velocity under the crest u,(y)/(g?j)& as abscissa and dimensionless height above the 
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bottom y/v as ordinate. Every profile is identified by a reference letter, and contains 
two numbers: wave height E = H/?j  and period T * ,  plus another number in brackets 
the wavelengthldepth ratio h/?j given by fifth-order cnoidal theory. Conveniently for 
comparison, the wave height throughout figure 3 is about 0-3 (i.e. 0-282-0*345), while 
the wave height in figures 4 (a)-(d) is about 0.4, and is approximately 0.5 in 4 (e)-(h). 
Each figure begins with the longest wave. 

On each experimental profile has been plotted one or all of the following theoretical 
profiles: (i) fifth-order cnoidal wave shown by a solid line, (ii) fifth-order Stokes wave, 
the dashed line, and (iii) high-order stream function theory (Dean 1970) shown by a 
chain-dotted line (on 46, e ,  and h ) .  

Wave height 0.3.  In figures 3 (a)-(e), results from the 4th-9th cnoidal wave theories 
agreed SO closely as to be indistinguishable, so that the author is satisfied that the lines 
as plotted are an accurate solution of the irrotational flow problem. Unfortunately in 
none of the cases do the results agree particularly well with experiment, but in view of 
the close agreement between the cnoidal wave theories one is tempted to believe that 
the disagreement between theory and experiment is due largely to real fluid effects in 
the experimental tank. Examining the experimental results there seems to be evidence 
of boundary layers near the bottom of the tank. In  a full-scale situation, at Reynolds 
numbers some thousands of times greater, such viscous effects would be much less. 
Accordingly, figure 3 will be used only as a basis for comparing Stokes and cnoidal 
wave theory. For the longest wave, figure 3(a), Stokes theory gave velocities some 
15 yo greater than the 4th-9th order cnoidal theories. At T *  M A/? M 12, figure 3 ( d ) ,  
Stokes results were within 5 yo of cnoidal, corresponding to an empirical drag force 
(proportional to u:) error of 10 %. As the wavelength decreases, the two theories agree 
more closely, until at  T*  10 they give good agreement. From this point however, the 
9th-order cnoidal theory started to be distinguishable from the 5th, and one no longer 
can have so much confidence in the cnoidal results. This divergence began to be marked 
after (h) ,  so that the Stokes wave results should be trusted more for 7* < 8.6, which is in 
keeping with the results of 5 5.2 for wave speed. It is interesting that in figure 3 ( I ) ,  the 
shortest wave, agreement between the Stokes results and the experiment was remark- 
ably good. There is no evidence of a boundary layer, which result might be most 
readily expected for these shorter wavelengths. 

Wave height 0.4. In figures 4(a)-(d), for higher, but longer, waves than figure 3, 
agreement between the fifth-order cnoidal wave theory and experiment is good, even 
for wavelengths as short as 8-4 (T* = 8-6). However, for a real solution of the transcen- 
dental fifth-order Stokes equation for (ak) ,  the Stokes expansion parameter could 
only be obtained for case (d) .  For this case, the cnoidal wave solution agrees rather 
better with experiment. The only stream function result given by Dean for this row is 
that of figure 4 ( b ) ,  which was stated by him to be the closest to experiment of all the 
eight cases tested by him. It is not quite as good as the cnoidal result. An advantage of 
the two formal expansion procedures, Stokes and cnoidal, is that, once coefficients in 
the expansions.are known, it is a simple matter (albeit lengthy without a computer) to  
produce any results given by that theory for any depth, provided the expansion is still 
valid. For solutions such as Dean’s stream function theory, numerical solution of the 
equations, and hence special computer programs, are necessary. 

Wave height 0.5. For higher waves still, figures 4 (e)-(h) show that the fifth-order 
Stokes wave-solution can still only be obtained for the shortest wave and that in that 
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FIGURE 4. Vertical distribution of horizontal fluid velocity under wave crests. Experimental 
results of Le MBhautB et al. (1968) are within the horizontally hatched regions. Fifth-order cnoidal 
wave theory (-), fifth-order Stokes wave theory (---), stream function theory (-.-) (Dean, 

7* = 15.9 (x, x 16.9); (d )  8 = 0.434,7* = 8.6 (x, x 8.4); ( e )  8 = 0.548,7* = 27.3 (x* x 31-7); 
1970). (a) 5 = 0*433,7* = 27-2 (x, x 30.6); (b)  E = 0.389,7* = 22.5 (x* X 30.6); (c) 5 = 0.420, 

(f) I = 0.493, 7, = 22.5 (x* = 25.3); (9)  5 = 0.522, 7, = 15.9 (x* x 17.5); (h)  Z = 0.499, 
7+ = 8.6 (2, = 8.5). 

case it is not accurate. The cnoidal wave results also are not good, except in the lowest 
case figure 4 cf), when 8 = 0.492. For the other higher waves it is no longer accurate. At 
this height, the stream function theory does give quite good results: not really to be 
preferred over cnoidal theory for the long wave case of figure 4 ( e ) ,  but certainly for the 
shorter wave of figure 4 ( h ) .  The stream function approach should be most suited to 
shorter waves, as i t  is based on a Stokes type of expansion. 

Finally, the apparently asymptotic nature of the series used for the velocity profile 
should be mentioned. For the series of wave height 0.3, all higher-order cnoidal expan- 
sions tended to agree with the fifth-order result, and, where small differences were 
apparent, the higher-order solutions would be trusted. However, for all higher waves 
(0.4 and 0.5), the higher-order theories gave results which were wildly divergent from 
the fifth-order and from the experimental results, providing more evidence for the 
asymptotic nature of the series. Generally the fifth-order solution was quite accurate 
and, except for high and short waves, did not show the marked disagreement with 
experiment of higher orders. I n  all practical application i t  is recommended that terms 
higher than the fifth be not included. 
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6.  Conclusions 
A method has been developed for generating high-order cnoidal wave solutions. Such 

a solution has been obtained to ninth order using a computer to manipulate the long 
series necessary ; however, comparison with previous experimental and theoretical 
results has shown that there is no gain in accuracy to be had by including terms after 
the fifth, suggesting that the series are asymptotic rather than convergent. The fifth- 
order cnoidal wave solution is presented in the appendix in the form of a number of 
series for which all numerical coefficients are given. Any steady wave problem in 
shallow water, involving a given wave height, period, and water depth, may be solved 
using the series presented. 

Results from the fifth-order theory have been compared with other high-order 
theories for steady water waves. The following conclusions can be drawn. 

( 1 )  For dimensionless periods 7(g/r)f, or wavelengths A/?f ,  greater than 8, fifth- 
order cnoidal wave theory should be used. In  the case of waves shorter than this, fifth- 
order Stokes wave theory is preferable. 

(2) If overall integral quantities such as wave speed, wave power, etc., are required, 
the fifth-order cnoidal wave solution is highly accurate up to a relative wave height 
H/?f of about 0.65, provided the limitation of ( 1 )  is observed. 

(3) For solutions of the fluid flow beneath waves, the fifth-order cnoidal wave 
expansion gives accurate results for relative wave heights up to 0.4, and in the absence 
of other convenient theories can be applied without gross error to wave heights of 0.5. 

(4) For lower wave heights there is greater overlap between the areas of validity of 
the two theories. For example, a wave of 0.2 times the depth may be solved using 
Stokes theory for relative wavelengths of up to 12 say, while cnoidal theory may be 
applied to wavelengths as small as 5. 

Appendix 
Below are set out all the fifth-order expressions based on cnoidal wave theory which 

have been generated in the present work. All coefficients are given rounded to five 
decimal places; where any fewer places are given, all trailing numbers are zero. This 
accuracy was considered by the author to be reasonable for all practical use, however 
all coefficients given are stored to ten decimal places in the computer at  the University 
of N.S.W. The author would be glad to send punched computer cards containing these 
numbers to anybody who may request this. 

Appendix A contains three tables of Coefficients, any two of which may be used, 
given a practical problem involving known water depth 7, wave height H and period T 
or wavelength A, first, to solve for m by trial and error using tables A 1 or A 2, and then 
to solve for h the trough depth using table A 3, to give E = H / h ,  used throughout 
appendices B and C. 

Appendix B contains tables of coefficients so that a detailed solution of the flow field 
for a particular wave may be generated. Finally, appendix C gives tables for several 
constant integral quantities of a cnoidal wave train. 
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Appendix A 
Please note that the dimensionless wave height used throughout this appendix is 

E = HfTj. 

i k j = O  
1 0 1.25 

2 0 -0.46875 
1 -1.5 

1 0.125 
2 0.376 

3 0 1.01556 

2 0.21875 
3 0.06250 

1 3.66490 

3 0.203 13 
4 0.02344 

1 -0.91938 

4 0 -2.79984 

2 -1.48453 

1 
- 0.625 
- 
0.46875 

- 0.06250 - 
- 1.52333 

0.91938 
- 0.10938 

5.59969 
- 5.49735 

1.48453 
-0.10156 

- 

- 

2 
- 
- 

- 0.16406 - 
- 
0,73241 

- 0.06391 - 
- 

- 4.07395 
3.04491 

- 0.10465 
- 
- 

3 - 
- 
- 
- 
- 

-0.11232 - 
- 
- 
1.27410 

- 0.60623 
- 
- 
- 

TABLE A 1. Coefficients A$,k in series for dimensionless wavelength 
A* = A/? = 4K(3Z/m)-* (1 + CC~:huk(~/m)'mj(E/K)k). 

i k 

1 0 
1 

2 0 
1 
2 

3 0 
1 
2 
3 

4 0 
1 
2 
3 
4 

j = o  
0-25 

0.0 1458 
- 1.08333 

1 
0.36121 
2.5041 7 

- 4.5 
2.0 

- 1.86885 
- 4.22859 

- 

15.19111 

4 
- 13.66667 

1 

- 0.125 
- 

- 0.01458 
0.54167 - 

- 0.54182 
- 2.5041 7 

2.25 

3.73770 
6.34288 

- 15.19111 
6.83333 

- 

- 

2 

- 
- 0.07656 
- 
- 
0.41216 
0.33229 
- 
- 

- 2.73031 
- 1.88433 

2.691 11 
- 
- 

TABLE A 2. Coefficients 7ijk in series for dimensionless period 
T,, = 7(g /T ) *  = 4K(3E/m)-s ( 1  + CC.C7i,b(E/m)imi(E/K)~). 
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i k 

1 0 
1 

2 0 
1 
2 

3 0 
1 
2 
3 

4 0 
1 
2 
3 
4 

5 0 
1 
2 
3 
4 
6 

j = o  1 2 3 

- - 1.0 - 1.0 
-1 
- 0.5 0.5 

- - - 
- - 
- - 0-5 - 0.25 

0.665 - 0.99750 0.33250 - 

0.5 - 0.25 

- - - - 

- - 1.165 1.165 - 0.04 - - 
- - - - 

- 1.62667 3.25333 - 2.454 0.82733 
3.20667 - 4-81 2.1 7633 - 0'28650 

- 2.08 2.08 - 0.1 4250 - 
0.5 - 0.25 - - 

4.86659 - 12.16647 11.79929 - 5.53247 
- - - - 

- 10.74409 21.48818 - 16.00776 5.26368 - 
8.62250 - 12.93375 6.09025 - 0.88950 

- 3.245 3.245 - 0.30750 - 
- - 0.5 - 0.25 

- - - - 

TABLE A 3. Coefficients hijk in series for minimum depth 
h / y  = 1 + XCChij,(E/m)'mj(E/K)k. 

Appendix B 
The dimensionless wave height used throughout this appendix is E = H / h .  

i j = O  1 2 3 4 

- - - 1 0.25 - 0.875 
2 0.03125 - 0.34375 0.86719 - - 
3 -0.37743 0.51 146 0.13743 -0.833 - 
4 0.20322 0.44278 - 1.38945 0.54282 0.76773 

TABLE B 1. Coefficients air in series for a: CL = (&/rn)h(l +CXaii(~/m)'rn') .  
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i 3. 

1 0 
1 

2 0 
1 
2 

3 0 
1 
2 
3 

4 0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
5 

5 

k 
k ,- I 

1 2 3 4 

- - - - 
- - - 0.75 0.75 

- - - - 
- - - - 

- 0.76250 0-76250 - - 
1.38750 - 2.65 1.26250 - 
- - - - 
- - - - 

- 0.80533 0.80533 I - 
2.48904 - 4.33146 1.84242 - 

- 3.051 88 7.40646 - 6.52546 2.17088 
- - - - 
- - - - 
0.43643 - 0.43643 - - 
1.92280 - 4.66167 2.73888 - 

- 7.04588 15.45561 - 15.31697 4.90723 
6.54722 - 19.80887 25.34187 - 16.32709 

TABLE B 2. Coefficients qttr in series for wave profile 
q = 1 + CC~qt,r(E/m)'m~(cn2)1. 

i j = o  1 2 3 4 5 
- - - 1 -0.5 1 .o - 

2 0-225 - 0.35 - 0.025 
3 -0'07857 0.06161 0.0491 1 0.02143 - - 
4 0.39788 - 0.73683 0.70620 - 0.38355 - 0.03888 - 
5 -0.82992 1.57745 - 0.59145 - 0.67125 0.46271 0.07232 

TABLE B 3. Coefficients Q j ,  in series for dimensionless volume flux 
Q* = 1 + CCQ,j(E/m)imj. 

- - - 

i j = 0 l.o 1 2 3 4 5 - - - - 1 -0.5 
2 0.35 - 0.35 - 0.025 - 
3 -0.19107 0.11161 0.01161 0.04643 - - 
4 0.46248 - 0.73388 0.65870 - 0.31944 - 0.085 - 
5 -1.04654 1.92262 - 0.98229 - 0.39222 0.32619 0.15647 

TABLE B 4. Coefficients R,  in series for dimensionless energy per unit mass 
R,  = 1.5 + CCRij(E/rn)'mj. 

- - 
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i 1  

1 0  

2 0  

1 

3 0  

1 

2 

4 0  

1 

2 

3 

5 0  

1 

2 

j k = O  

0 -0.5 
1 1 -0 
0 0.225 
1 - 0.6 
2 0.226 
0 -  
1 0.75 
2 -0.75 
0 -0.07857 
1 0.14911 
2 0.16161 
3 -0.17857 
0 -  
1 -0.375 
2 -  
3 0.375 
0 -  
1 0.18750 
2 -0.56250 
3 0.375 
0 0.39788 
1 -0-74576 
2 0.73477 
3 -0.67908 
4 0-23701 
0 -  
1 0.01875 
2 -0.09375 
3 0.66562 
4 -0.59063 
0 -  
1 -  
2 0.14063 
3 0.14063 
4 -0.28125 
0 -  
1 0.01875 
2 -0.17813 
3 0.31875 
4 -0-15938 
0 -0.82992 
1 1-76991 
2 -0.99629 
3 -0.41272 
4 0.83138 
5 -0.34250 
0 -  
1 -0.57050 
2 1.44569 
3 -1.29006 
4 -0.38012 
5 0.795 
0 -  
1 -0.01875 
2 -0.45 
3 046797 
4 -1.16016 
5 0.66094 

1 

- 
- 1.0 

1.0 
- 1.25 

- 

- 
- 1.5 

3.0 - 
- 0.4 

1 *35 
- 0.475 - 

0.75 

3.0 
- 5.25 

- 
- 0.375 

3.18750 
- 3-18750 - 

0 0 9 6 4 3 

0.55694 
0.1 701 8 

- 0.46431 

- 
- 0.03750 

5.625 

3.03750 
- 7.55625 

- - 
-4.78125 

9.70312 
- 4-07812 
- 

- 0.03750 
1.23750 

2.325 
- 3.48750 

- 
- 0.78281 

0.89794 

0-70429 
- 0.66324 

- 0.26144 - 
1.141 

- 4.45837 
5-86650 

- 2.12075 
- 2.23875 - 

0.03750 
3.84375 

16.30547 
- 16.092 19 

2 

- 
- 
- 
- 
1 -0 
- 
- 

- 2.25 
- 
- 

- 1.7 
1.9 
- 
- 
7.125 

- 10.875 - 
- 

- 2.81250 
5.625 - 
- 
0.81967 

1 *03417 
- 3.04667 

- 
- 

- 7.25625 
29.025 

- 17.07188 
- 
- 
6.0 

- 33.42187 
27.09375 - 
- 

- 1.18125 
7.08750 

- 7.08750 
- 
- 
0.49893 
1.20740 

0.43733 
-2.71917 

- 
- 
2-27950 

-31-13156 
42.62962 

- 11.405 
- 
- 

- 3.91875 
63.225 

- 110.93203 

3 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 1.2 
- 
- 
- 
7.5 - 
- 
- 

- 2.81250 
- 
- 
- 
2.90133 

- 3.10267 
- 
- 
- 

- 25.2 
33.525 - 
- 
- 

24.375 
- 42.42187 - 
- 
- 

- 3.93750 
7.875 - 
- 
- 

- 2.26014 
7.12267 

- 2.69367 
- 
- 
- 

31.778 
- 110.618 

61.73675 
- 
- 
- 

- 53.23125 
225.63750 

- 5.39297 47.56406 - 162.53203 204.75 - 86-01 
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i 1  j k = O  1 2 3 4 6 

3 0  - 
1 0.00937 
2 0.11719 

4 0.05156 
5 0.075 

1 0.001 
2 -0.03415 
3 0-12656 

5 0.06228 

3 -0.25313 

4 0  - 

4 -0.15569 

- 
- 0.01875 
- 1.59375 

9.84375 

4-875 

- 0~00201 
0.26016 

- 1.64833 
2.77634 

- 1.38817 

- 13.23750 

- 

- 
- 
1.80938 

73.18 125 
- 31.55625 

- 41.7 

- 
- 0.25614 

3.70647 

6.38839 
- 9.58259 

- 
- 
- 

22.96875 

103.68750 
- 115.5 

- 

- 
- 2.21484 
11-70703 

- 11.70703 

- 
- 
- 

55.617 19 
- 102.375 - 
- 

- 
- 4.74609 

9.492 19 

- 
- 

- 2.84766 

TABLE B 5. Coefficients # i f k t  in series for fluid velocities, accelerations and pressure. 

i k  j = o  1 2 3 4 5 

I 0  0.5 
1 -1.0 

2 0 -0610833 
1 0.33333 

1 0.09333 
I 0  0.02097 

1 0.37690 
i 0  0.1 1046 

3 0 -0.17190 

1 -0.94038 

- 
- 0.01667 

0.08333 
0.3391 1 

0.17293 
- 0'68202 
- 0.31285 

1.22117 

- 0.34333 

- 
- 0.025 - 
- 0.16006 

0.21833 
- 0.56238 

1.04889 

0.35314 
- 0.11262 

- 
0.04643 

0.39861 

0.91605 
- 0.56668 

- 1.75325 

- 0.08531 
- 

- 0.73881 
1.006 19 

TABLE B 6. Coefficients c * , ~  in series for wave speed 
c* = 1 + CCCCi,,(€/rn)"mi(E/K)". 
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Appendix C 
The dimensionless wave height used throughout this appendix is e = H / h .  

i k 
2 0 

1 
2 

3 0 
1 
2 

4 0 
1 
2 

5 0 
1 
2 

j = O  1 2 3 

- 0.33333 
1.33333 

- 1.0 
0.1 

- 0.93333 
0.83333 
0-205 
0.03333 

- 0.23833 
- 0.10943 
- 0.82248 

0.93 190 

0.33333 
- 0666667 
- 

- 0.06667 
0.6 

- 0.16667 
- 0.485 

0.65 

0.01732 
1.60329 

- 1,09994 

- 0.38667 

- 
- 

- 0.03333 
0.06667 

0.35417 

0.44917 
0.56278 

1.64231 

- 0.83 

- 2.67396 

- 0.07417 
0.14833 
- 

- 0.67712 
2.18065 

- 0.98610 

TABLE C 1. Coefficients Icjk in series for wave impulse 
I* = CCCIi jk (€ /m) i~ i (E /K)k .  

4 

- 
- 
0-20644 

- 0.41289 
- 

i k 
2 0 

1 
2 
3 

3 0 
1 
2 
3 

4 0 
1 
2 
3 

5 0 
1 
2 
3 

j = o  1 2 3 

- 0.16667 0.16667 - - 
0,66667 - 0.33333 - - 

- 0.5 - - - - 
- 0.03333 

0.03333 
- 0.5 

0.5 
0-14556 

0.83222 
- 0.58333 

0.01977 
- 0.56834 

0.337 18 
0.21139 

- 0.39444 

- 
0.05 

0.25 
- 0.03333 

- 
- 0.27444 

0.575 

0.04167 
- 0.19498 

1.53113 

0.37194 

- 0.58222 

- 1.338 

- 
- 0.01667 

0.03333 
- 
- 
0.17014 

- 0.37889 
0.17597 

0.45424 
- 2.04019 

1.71556 

- 

- 0.34069 

- - 
- 0.04125 

0.08250 

- 
- 0.39040 

1.27'574 
- 0.65835 

4 

TABLE C 2. Coefficients Tijk in series for kinetic energy 
T* = ~CCT,jk(B/m)"m'(E/K)k. 
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i k 
2 0 

1 
2 

3 0 
1 
2 

4 0 
1 
2 

5 0 
1 
2 

j = O  1 2 3 4 

- 0.16667 
0-66667 

- 0.5 
0.1 

- 0.6 
0-5 
0.00905 
0.28095 

0-03644 
- 0.66560 

0.62917 

- 0.29 

0.16667 
- 0.33333 
- 

- 0.15 
0.6 

- 0.25 
- 0.06810 
- 0.12143 

0.04 

1.0502 5 
- 0.10014 

- 0.65375 

0.05 
- 0.1 
- 
0.10744 

0.17875 
0.24178 

0-72508 

- 0.25310 

- 1.21573 

- 
- 

- 0.04839 
0.09679 

- 0.27687 
0.92465 

- 0.404 

TABLE C 3. Coefficients V,,, in series for potential energy 
V, = CCC~,,(€/m)‘nz’(E/K)”. 

i k j = O  1 2 3 4 

2 0 -0.33333 
1 1.33333 
2 -1.0 

3 0 0.4 
1 -1.06667 
2 0.66667 

4 0 -0.05016 
1 -0’02540 
2 0.07556 

5 0 0.09597 

2 0.69159 
1 -0.78756 

0.33333 
- 0.66667 - 
- 0.43333 

0.4 
0.16667 

1.10476 
- 0.29968 

- 0.74222 
- 0.16468 

1.6 1321 
- 1.15071 

0.03333 
- 0.06667 
- 
0.50853 

0.42972 
0.61066 

2.00945 

-0.91413 

- 3.224 

- 
- 0.15869 

0.3 17 38 
- 

- 0.84791 
2.48383 

- 1.16975 

- 
- 
0.30597 

- 0.61194 

TABLE C 4. Coefficients Utj ,  in series for mean square of bed velocity 
q / g h  = CCCUijk(€/m)imj(E/K)k. 

i k j = O  1 2 3 4 

2 0 
1 
2 
3 

3 0 
1 
2 
3 

4 0 
1 
2 
3 

5 0 
1 
2 
3 

- 0.5 
2.0 

- 1.5 - 
0.3 

- 0.8 
- 0.5 
1.0 

- 0.06175 
- 0.14603 

1.37444 
- 1.16667 

0-37090 
- 2.09721 

1.30353 
0.42278 

0.5 
- 1.0 

- 
0-15 

- 0.3 
- 0.45 

0.8 
0.25 - 

- 0.02651 
0.61905 

0.08333 
- 0.86550 

4.34044 
- 3.32974 

0.74389 

- 1.12444 

- 
0.23343 

0.53069 

1.07073 

4.15620 
- 0.68139 

- 0.75373 

- 

- 5.24517 

- 
-0.14518 

0,29036 
- 
- 

- 0.87252 
3.28264 

- 1,72069 - 
TABLE C 5. Coefficients (SrE)f,X in series for radiation stress 

= cc(SEZ)fjk (E/nz)‘m’(E/K)k* 
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i k 

2 0 
1 
2 
3 
4 

3 0 
1 
2 
3 
4 

4 0 
1 
2 
3 
4 

5 0 
1 
2 
3 
4 

j = O  1 2 3 

- 0.33333 0.33333 - - 
1.33333 - 0.66667 - + 

- 1.0 - - - 
- - - - 
- - - - 

- 0.1 0.06667 0.03333 - 
0.93333 -0.6 - 0.06667 - 

- 2.83333 1.16667 - - 
2.0 - - - 
- 
0-23516 

3.0061 1 
- 1.33333 
- 0.5 

0.20883 

0.66365 

0.75 

- 1.40794 

- 1.26248 

- 0.36 

- 
- 0.44532 

1.87857 

0.16667 
- 2.29778 

- 
- 0.69843 

3.58090 

1-36 
- 3.25006 

- 

- 
0.30813 

0.61028 
- 0.91254 

- 
- 
1.06473 

4.58302 
- 4.88547 

- 1.235 
- 

- 
- 0.09798 

0.19595 
- 
- 
- 

- 0.79994 
2.87763 

- 1.70602 - 
- 

TABLE C 6. Coefficients Fijk in series for wave power 
F* = CCCFtjk(e/m)4mj(E/K)k. 

i k j = O  1 2 3 4 

2 0 
1 

3 0 
1 

4 0 
1 

5 0 
1 

0.33333 
- 1.33333 

0.23333 
- 0.73333 
- 0.13833 
- 0.16667 
- 0.09057 

1.00248 

- 0.33333 
0.66667 

1.733333 

1.16667 
0.46851 

- 0.6 

- 0.015 

- 1.71329 

- 
0.36667 

0.44583 
- 0.73333 

- 1.58667 
- 0.84195 

1.36479 

- 
- 
- 

- 0.29250 
0.585 
0.17795 

- 0.35648 

- 
0.08606 

- 0.1721 1 

TABLE C 7. Coefficients Ci,, in series for mean Stokes drift velocity 
c,* = CBCC~,k(e/m)imi(E/K)k. 

i j = O  1 2 3 4 5 

- - - - 1 -1.0 2.0 
2 0-7 - 1.2 0.45 - - - 
3 -0.38214 0.67321 - 0.27679 0.04286 - - 
4 0.92495 - 1.65883 1.48258 - 0.70585 - 0.07714 - 
5 -2.09307 4.30772 - 2.68650 - 0.19726 0.49464 0.14295 

TABLE C 8. Coefficients St, in series for momentum flux 
S = 1.5 + CCc(e/m)' mjSd,. 
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